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Anonymization-based privacy protection ensures that data cannot be traced back to individuals. Researchers
working in this area have proposed a wide variety of anonymization algorithms, many of which require a
considerable number of database accesses. This is a problem of efficiency, especially when the released
data is subject to visualization or when the algorithm needs to be run many times to get an acceptable
ratio of privacy/utility. In this paper, we present two instant anonymization algorithms for the privacy
metrics k-anonymity and ¢-diversity. Proposed algorithms minimize the number of data accesses by utilizing
the summary structure already maintained by the database management system for query selectivity.
Experiments on real data sets show that in most cases our algorithm produces an optimal anonymization,
and it requires a single scan of data as opposed to hundreds of scans required by the state-of-the-art
algorithms.
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1. INTRODUCTION

With the advance of technology, data collection and storage costs plummeted, which re-
sulted in pervasive data collection efforts with the hope of turning this data into profit.
If the data collector has the capacity to perform data analysis, then this could be done
internally. However, in some cases, data needs to be outsourced for analysis or it may
need to be published for research purposes like health related data in medical research.
In order to preserve the privacy of individuals, data needs to be properly anonymized
before publishing, which cannot be achieved by just removing personal identifiers. In
fact, Samarati [2001] and Sweeney [2002] show that using publicly available sources
of information such as age, gender, and zip code, data records can be reidentified
accurately even if there is no direct personally identifying information in the dataset.

k-Anonymity was proposed as a standard for privacy protection, which requires that
an individual should be indistinguishable from at least £ — 1 others in the anonymized
dataset [Samarati 2001; Ciriani et al. 2007]. Two individuals are said to be indistin-
guishable if their records agree on the set of quasi-identifier attributes, which are not
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unique identifiers by themselves but may identify an individual when used in combi-
nation (e.g., age, address, nation, ...). Researchers working in this area have further
proposed a wide variety of privacy metrics such as ¢-diversity [Machanavajjhala et al.
2006] which overcomes the privacy leaks in k-anonymized tables due to lack of diver-
sity in sensitive attribute (e.g., salary, GPA, ...) values. However, currently proposed
techniques to achieve the desired privacy standard still require a considerable number
of database accesses. This creates a problem especially for large datasets, and espe-
cially when response time is important. Indeed, to balance privacy vs. utility, the data
releaser might need to run the anonymization algorithm many times with different
parameters, might even need to visualize the outputs before deciding to release the
best anonymization addressing the expectations. This arouses the need for efficient
anonymization algorithms with acceptable utility guarantees.

In this paper, we present instant algorithms for k-anonymity and ¢-diversity that
require few data scans. We show that such an anonymization could be achieved by
using a summary structure describing the data statistically. There are two ways to
obtain such a summary structure. First, one can construct the summary structure by
preprocessing the dataset. Preprocessing is done only once but should still be relatively
efficient. As a representative for such summary structures, we use histograms that can
be constructed with a single scan of data. Second, one can obtain the summary struc-
ture from the underlying database management system (DBMS). There exist summary
structures that are maintained by DBMS mainly for query selectivity and are freely
available for use to other applications as well. We use histograms and bayesian net-
works (BNs) as a case study to demonstrate the effectiveness of the proposed methods
on real datasets. To the best of our knowledge this is the first work which utilizes
statistical information for efficiently anonymizing large data sets.

The method we propose for instant anonymization has two phases: First, by using
the summary structure, we build a set of candidate generalization mappings that have
a high probability of satisfying the privacy constraints. Our methodology of calculating
such a probability is the first statistical analysis of 2-anonymity and ¢-diversity given
a generalization mapping. In this first phase, we work only on the summary structure
which in most cases fits into memory, and we do not require any data accesses. Second,
we apply the generalization mappings in the candidate set to the dataset until we find
a mapping that satisfies the anonymity constraints. The performance of our technique
depends on the candidate set, thus depends on the accuracy of our statistical analysis.
Experimental results show that our algorithms greatly reduce the number of database
accesses while producing an optimal or close to optimal anonymization, and in most
cases they require a single scan of data as opposed to hundreds of scans required by
the state-of-the-art algorithms.

The article is organized as follows: In Section 2, we give background and notations
used in the article, followed by related work. In Sections 4 and 5, we show how to
calculate the probability of achieving k-anonymity and ¢-diversity given a mapping
and a summary structure. In Section 6, we provide several heuristics to speed up
the calculations. In Section 3, we present the instant anonymization algorithms for
k-anonymity and ¢-diversity. In Section 7, we report experimental results regarding
the performance of our approach. In Section 8, we conclude with a discussion of future
work in this area.

2. BACKGROUND AND RELATED WORK

2.1. Table Generalizations and Privacy Metrics

Given a dataset (table) T', T'[c][r] refers to the value of column ¢, row r of T'. T'[c] refers
to the projection of column ¢ on T and T'[.][r] refers to selection of row r on T'. We write
|t € T'| for the cardinality of tuple ¢ € T' (the number of times ¢ occurs in T').
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Fig. 1. DGH structures.

Although there are many ways to generalize a given value, in this article, we stick
to generalizations according to domain generalization hierarchies (DGH) given in
Figure 1.

Definition 2.1 (i-Gen Function). For two data values v* and v from some attribute
A, we write v* = A;(v) if and only if v* is the ith parent of v in the DGH for A. Similarly
for tuples ¢, t*, t* = A;,..;, (¢) iff t*[c] = A, tlc] for all columns c. Function A without a
subscript returns all possible generalizations of a value v. We also abuse notation and
write A~1(v*) to indicate the children of v* at the leaf nodes.

For example, given the DGH structures in Figure 1. A{(USA)=AM, Ay(Canada)=*,
Ag.1(<M,USA>)=<M, AM>, A(USA)={USA,AM,*}, A~1(AM) ={USA, Canada, Brazil}

Definition 2.2 (u-Generalization). A generalization mapping u is any surjective
function that maps tuples from domain D to a generalized domain D* such that for
t € D and ¢t* € D*; we have u(¢) = t* (we also use notation A, (¢) = u(¢) for consistency)
only if t* € A(¢). We define A;l(t*) ={t € D| A,%) = t*}). We say a table T* is a u-
generalization of a table T with respect to a set of attributes QI and write A, (T') = T'%,
if and only if records in T'* can be ordered in such a way that A, (T'[QI][r]) = T*[QI][r]
for every row r.

InTable I, T}, Ty are two generalizations of T' with mappings 1 and ug respectively;
E.g, A, (T)=T;. Ay, (<F,US,Prof>) = <* ,AM,Prof>; <F,US,Prof> eA;ll(<*,AM,Prof>).

Definition 2.3 (Single Dimensional Generalization). We say a mapping u is
[i1,...,1,] single dimensional iff given u(f) = t*, we have t* = A;,..; (t). We define
in this case the level of u as iy +--- +i,.

Each attribute in the output domain of a single dimensional mapping contains values
from the same level of the corresponding DGH structure. In Table I, 7' is a [0,1,1]
generalization of T'. (E.g., = 1(<M,AM,*>) = {<M,x, y> | x € {US, Canada, Brazil}, y
{Prof, Grad, Pdoc}}.) T} is not single dimensional. (E.g., values * and AM both appear
in T}".) Single dimensional mappings are easily represented with a list of numbers.

Given two single dimensional mappings u! = [if, ..., i1 and pu? = [i2,...,i2], we
say ! is a higher mapping than u? and write u! C p? iff u* # p? and i} > ¥ for all
jell—nl

To explain concepts, in this article, we stick to single-dimensional generalizations.
But we also briefly cover multidimensional generalizations that do not have the restric-
tion that all values in generalizations should belong to the same generalized domain:

Definition 2.4 (Multidimensional Generalization). We say a mapping u is multidi-
mensional iff the following condition is satisfied. Whenever we have u(¢) = t*, we also
have u(t;) = t* for every t; € A~1(¢*).
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Table I. Private Table T', 2-Anonymous Generalization T, and 2-Diverse Generalization 7'

Name Sex Nation Occ. | Sal.

ql M US Grad L

q2 M Spain Grad L

q3 F Ttaly Pdoc H

q4 F Brazil Pdoc L

q5 M Canada  Prof H

q6 F US Prof H

q7 F France Prof L

q8 M Ttaly Prof H

T
Name Sex Nation Occ. | Sal Name Sex Nation Occ. | Sal.
ql M g Grad L ql M AM i L
q2 M e Grad L q5 M AM K H
q3 F * Pdoc H q2 M EU * L
q4 F * Pdoc L q8 M EU * H
q5 & AM Prof H q3 F EU & H
q6 &3 AM Prof H q7 F EU E L
q7 * EU Prof L q4 F AM * L
q8 * EU Prof H q6 F AM * H
Ty Iy

Every single dimensional mapping is also multidimensional. In Table I, both 7' and
Ty are multidimensional generalizations of T'.

While multidimensional generalizations are more flexible than single dimensional
generalizations, single dimensional algorithms still offer three main advantages:

—Single dimensional algorithms produce homogeneous outputs meaning each value
is generalized the same way throughout the anonymization. This makes it easy
to modify applications designed for classical databases to work with higher level
anonymizations. (E.g., in T every US becomes AM. Ty can be utilized by any regular
database application without any modification costs. In 7" however some US values
generalize to AM while others to *. Fuzziness introduced by T* needs to be handled
by specialized applications.)

—The mappings used in single dimensional algorithms translate well into the current
legal standards that draw boundaries in terms of generalized domains. (For instance,
for deidentification, the United States Healthcare Information Portability and Ac-
countability Act (HIPAA) [HIPAA 2001] suggests the removal of any information
regarding dates more specific than the year.)

We review the literature on anonymization algorithms in Section 2.2.

The main disadvantage of single dimensional algorithms is that they produce less
utilized outputs compared to multidimensional algorithms. As we shall see in Section 7,
tolerating some suppression helps negate the effects of inflexibility and can substan-
tially increase utility in anonymizations. Since single dimensional algorithms are more
sensitive to outliers [Nergiz and Clifton 2007], they tend to benefit more from suppres-
sion tolerance. Thus, the disadvantage of single dimensional algorithms can be reduced
to some extent via suppression.

Next we briefly revisit some anonymity metrics.

While publishing person specific sensitive data, simply removing uniquely identi-
fying information (SSN, name) from data is not sufficient to prevent identification
because partially identifying information, quasi-identifiers (QI), such as age, sex,
nation, occupation,. .. can still be mapped to individuals (and possibly their sensitive
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information such as salary) by using external knowledge. [Samarati 2001; Sweeney
2002]. (Even though T of Table I does not contain information about names, releasing
T is not safe when external information about QI attributes is present. If an adversary
knows some person Bob is a male professor from US; she can map Bob to tuple q1 thus
to salary High.) The goal of k-anonymity privacy protection is to limit the linking of a
record from a set of released records to a specific individual even when adversaries can
link individuals to QI:

Definition 2.5 (k-Anonymity [Samarati 2001; Ciriani et al. 2007]). A table T* is k-
anonymous with respect to a set of quasi-identifier attributes @I if each tuple in T*[QI]
appears at least %k times.

Ty, Ty are 2-anonymous generalizations of T'. Note that given T, the same adver-
sary can at best link Bob to tuples q1 and q2.

Definition 2.6 (Equality group). The equality group of tuple ¢ in dataset T* is the
set of all tuples in T'* with identical quasi-identifiers to ¢.

In dataset T, the equality group for tuple g1 is {g1,g2}. We use colors to indicate
equality groups in T} and T'.

While k-anonymity limits identification of tuples, it fails to enforce constraints on the
sensitive attributes in a given equality group. Thus, sensitive information disclosure is
still possible in a k-anonymization. (E.g., in T}, both tuples of equality group {q1,q2}
have the same sensitive value.) This problem has been addressed [Machanavajjhala
et al. 2006; Li and Li 2007; @hrn and Ohno-Machado 1999; Wong et al. 2006] by
enforcing diversity on sensitive attributes within a given equivalence class. In this
article, we will be covering the naive version of ¢-diversity [Xiao and Tao 2006a]':

Definition 2.7 (£-Diversity). Let r; be the frequency of the most frequent sensitive
attribute in an equality group G;. An anonymization 7'* is ¢-diverse if for all equality
groups G; € T*, we have ﬁ < %

In Table I, T is a 2-diverse generalization of T meaning the probability of a given
individual having any salary is no more than .5. T} violates ¢-diversity for all £ > 1.

In the following sections, we use the following property of 2-anonymity and ¢-diversity
proved respectively by LeFevre et al. [2005] and Machanavajjhala et al. [2006]:

Definition 2.8 (Anti-monotonicity). Given u! C u? and a dataset T, if A ,:(T') is not
k-anonymous (or ¢-diverse), neither is A 2(T).

In Table I, if 7'y is not k-anonymous (or ¢-diverse), neither is T'.

There may be more than one k-anonymization (or £-diverse anonymization) of a given
dataset, and the one with the most information content is desirable. Previous literature
has presented many metrics to measure the utility of a given anonymization [Iyengar
2002; Nergiz and Clifton 2007; Kifer and Gehrke 2006; Domingo-Ferrer and Torra
2005; Bayardo and Agrawal 2005]. We revisit Loss Metric, defined in Iyengar [2002]
and previously used in [Domingo-Ferrer and Torra 2005; Nergiz et al. 2007; Nergiz
et al. 2009¢; Nergiz and Clifton 2007; Gionis et al. 2008]. Given a is the number of
attributes:

1 ) |AH T -1

LM(T™) = T a A 00| — 1

i.J

IThe original definition given in [Machanavajjhala et al. 2006] protects against adversaries with additional
background that we do not consider in this paper.
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LM metric can be defined on individual data cells. It penalizes the value of each data
cell in the anonymized dataset depending on how general it is (how many leaves are

below it on the DGH tree). For example, LM(EU) = 'f;ﬁ% = %. LM for a dataset

normalizes the total cost to get a number between 0 and 1.

Despite its vulnerabilities, in Section 4 we start our analysis with k-anonymity in-
stead of ¢-diversity. There are two reasons for this. First, k-anonymity has a simple
definition and instant k-anonymization is a simpler subproblem of instant ¢-diversity.
Second, k-anonymity is still used for creating ¢-diverse anonymizations that are re-
sistant to minimality attacks [Wong et al. 2007]. Such attacks are carried out by
adversaries who know the underlying anonymization algorithm and enable adversary
to violate £-diversity conditions even though the released anonymization is ¢-diverse.
The basic idea to create resistant algorithms is to group the tuples without considering
sensitive attributes as in k-anonymity, then enforce ¢-diversity in each equality group
by distortion if necessary. In Section 5, we continue with the problem of achieving
instant ¢-diversity.

2.2. Anonymization-based Privacy Protection

Single dimensional generalizations have been proposed in Samarati[2001] and LeFevre
et al. [2005] and have been adopted by many works [Machanavajjhala et al. 2006;
Nergiz et al. 2007; Li and Li 2007, 2006; Fung et al. 2005; Nergiz and Clifton 2009].
Samarati [2001] observes that all possible single dimensional mappings create a lattice
over the subset operation. The proposed algorithm finds an optimal 2-anonymous gen-
eralization (optimal in minimizing a utility cost metric) by performing a binary search
over the lattice. LeFevre et al. [2005] improve this technique with a bottom-up pruning
approach and finds all optimal k2-anonymous generalizations. Fung et al. [2005] show
that a top-down approach can better speed up the k-anonymity algorithm. Bayardo and
Agrawal [2005] introduce more flexibility by relaxing the constraint that every value in
the generalization should be in the same generalized domain. Machanavajjhala et al.
[2006], Nergiz et al. [2007], and Li and Li [2007] adopt previous single dimensional
algorithms for other privacy notions such as ¢-diversity, ¢-closeness, and §-presence.

There have also been other algorithms that output heterogeneous generalizations.
Nergiz and Clifton [2007], Byun et al. [2007], and Agrawal et al. [2006] use clustering
techniques to provide k-anonymity. LeFevre et al. [2006] and Hore et al. [2007] parti-
tion the multidimensional space to form k-anonymous and ¢-diverse groups of tuples.
Ghinita et al. [2007] make use of space filling curves to reduce the dimensionality of
the database and provides k-anonymity and ¢-diversity algorithms that work in one di-
mension. To the best of our knowledge, there are two works that address the scalability
problem in multidimensional anonymization algorithms. The first work in Iwuchukwu
and Naughton [2007] proposes a k-anonymization algorithm that makes use of R-tree
indexes. The algorithm partitions the space in a bottom-up manner and reports exe-
cution times in seconds on synthetic data. Unfortunately, their approach cannot easily
be extended for optimal single-dimensional algorithms.

The second work [LeFevre et al. 2008] is of more interest to us. The first proposed
algorithm Rothko-T is based on extracting frequency sets (statistics necessary to decide
on a split point) from the dataset and splitting the multidimensional domain with
respect to a chosen attribute. Statistics are updated whenever a split happens. Rothko-
T does not make statistical analysis or predictions. The second proposed algorithm
Rothko-S is based on predictions and is showed to be more efficient than Rothko-T;
thus is more relevant to us. Rothko-S extracts a sample (that fits in memory) from the
dataset and uses the sample to identify split points within the Mondrian algorithm.
The paper analytically shows how to calculate the confidence on the selected split
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points for k-anonymity but mentions the difficulty of doing a similar analysis for ¢-
diversity. Another sample is re-extracted in case the confidence for a smaller partition
drops below a threshold. Experiments on synthetic data identify cases in which the
sampling-based approach decreases the number of scans to three while returning the
same output as Mondrian returns. A similar approach can be followed for single-
dimensional algorithms. Even without an empirical analysis of such an extension, we
can state the following differences with our approach. First, both approaches differ in
the way the probabilistic analysis is carried out. Given a sample, LeFevre et al. [2008]
bound the probability that a split of space will violate the anonymity requirements.
They use first order Bonferroni bounds which is faster to compute but which tends to
give wide bounds [Schwager 1984]. We approximate this probability given a summary
structure by using a more direct approach. Second, we provide a formal analysis also
for ¢-diversity (given some statistics on data). As mentioned in LeFevre et al. [2008]
and as we shall see in Section 5 compared to k-anonymity, the probabilistic analysis
of ¢-diversity is harder and computing confidence on ¢-diversity is much less efficient.
Thus we also propose optimizations to speed up the analysis.

Due to the large space of heterogeneous generalizations, none of the above mentioned
algorithms guarantees optimality in their domain.

To the best of our knowledge, only LeFevre et al. [2005] report results regarding
the efficiency of the single-dimensional anonymity algorithm when implemented over
a real database. The time required for the single dimensional algorithm to run over a
moderate database is in hours. By using the techniques given in the rest of this paper,
we will reduce the execution time to seconds with little or no overhead on the utility.

Besides those already mentioned, there has been other work on anonymization of
datasets: Xiao and Tao [2006a] pointed out that if the sole purpose for anonymiza-
tion is to protect against sensitive information disclosure, we can avoid generalizing
quasi-identifiers for maximum utilization and achieve the same privacy guarantees
by associating sensitive values with equality groups rather than individual tuples.
In Jiang and Clifton [2006] and Zhong et al. [2005], anonymity was achieved in a dis-
tributed system by the use of secure multi party computations. In Xiao and Tao [2006b],
privacy requirements for anonymizations were personalized based on individual pref-
erences on sensitive attributes. Kifer and Gehrke [2006] showed releasing marginal
count tables along with anonymizations can increase utilization without violating k-
anonymity privacy constraints. Wong et al. [2007] showed optimality with respect to
a cost metric can be exploited to recover sensitive attributes from an anatomization.
Some studies [Nergiz et al. 2009a; Bonchi et al. 2008; Nergiz et al. 2009¢; Terrovitis
et al. 2008; Hay et al. 2008; Cormode et al. 2008; Aggarwal and Yu 2007] extend anony-
mity definitions for relational, spatio-temporal, transactional, graph, and string data.
And recently, there has been work on modeling adversary background knowledge in a
variety of privacy settings [Martin et al. 2007; Chen et al. 2007; Du et al. 2008; Li et al.
2009].

2.3. Selectivity Estimation and Multivariate Statistics

In order to come up with an execution plan, most current DBMS estimate the re-
sult size of the queries. For this, the DBMS constructs and maintains a summary
model that predicts the joint probability of the attribute values. Such a summary
model is freely available as a database resource. Many types of summary models
have been proposed. Kooi [1980] and Poosala et al. [1996] are just two among many
that use histograms on each distinct attribute and assume attribute independence to
predict joint distributions. While many real DBMS maintain histograms, it has been
shown that such first order histograms cannot accurately describe a moderately skewed
data. This led to many other approaches [Matias et al. 2000, 1998; Bruno et al. 2001;
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Table Il.
P(Prof) =.5 ‘P(H|Prof) = .75
‘ Occ. ‘ ‘ Sex ‘ P(Pdoc) = .25  P(H[Pdoc) = .5
P(Grad) = .25 P(H|Grad) =0
PM) =.5 P(US) = .25

] PF)=.5 P(1t) = .25
‘ Sal. HNatlon‘ .

Lee et al. 1999; Markl et al. 2007; Aboulnaga and Chaudhuri 1999; Poosala and Ioanni-
dis 1997; Getoor et al. 2001] in which more complex summary models are maintained
to capture multivariate statistics. One such technique supported by Oracle is dynamic
sampling that involves scanning a small random sample of data blocks to extract more
accurate statistics [Oracle 2009].

As histograms are the most widely used resources for query selectivity, we adopt them
in our analysis. As an example for complex summary models, we also adopt Bayesian
networks (BN) [Getoor et al. 2001].2 BNs are basically directed graphs in which each
vertex corresponds to an attribute and each edge shows a dependency relation between
the connected attributes (see Table II). Attribute pairs not connected by an edge are
assumed to be conditionally independent. Conditional probabilities on the connected
attributes are supplied with the BN structures.

We show, in Table II, the BN structure for table T' of Table I. The structure implies
correlation between the attributes occupation and salary, but shows independence for
the rest of the attributes. For the attributes in the root nodes, first-order distributions
are released. For the salary attribute with an incoming edge from occupation, condi-
tionals of the form P(Sal|Occ) are released. Note that BNs most often are not 100%
accurate. There may exist relatively small dependencies between attributes that are
not captured by the graph.

Even though we adopt histograms and BNs in our experiments, it should be noted
that the methodology given in this article is independent of the summary model being
offered by the DBMS. All we need is the joint probability distribution for attributes.
Thus, from now on we stop referring to BNs and assume we have access to a summary
function F as a database resource:

Definition 2.9. A summary function F on a dataset 7', when given an anonymized
tuple #* returns an approximation to the probability that a randomly selected tuple
t € T will satisfy t* € A(¢).

If we use a histogram over 7' in Table I as a summary function; by attribute inde-
pendence, F'(<M,US,Prof ,H>) = P(M)P(US)P(Prof)P(H) = 0.5-0.25-0.5-0.5 = 0.03125. If
we use the BN structure from Table II, we have F(<M,US,Prof ,H>) = P(M)P(US)P(Prof)
P(H|Prof) =0.5-0.25-0.5-0.75 = 0.046875.

Similarly, F(<M,AM,*,H>) = PM) > a1 PV Y pea1 PWPHIV) = 0.5 -0.5 -
(0.375 + 0.125 + 0) = 0.125. If we were to use sampling, we would calculate
F(<M,US,Prof,H>) by looking at the sample size and the frequency of <M,US,Prof ,H> in
the sample.

2We are not aware of a real system that utilizes BNs for selectivity. But in the light of recent research and
developments in the market [Oracle 2009], we believe there is strong motivation in using a complex summary
model capturing higher order statistics. Thus, we include BNs ,in addition to histograms, in our discussion
to evaluate our approach with respect to a complex summary structure.
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Table lll. Notations

Tlcllr], tlel value of column ¢, row r in table T' and attribute ¢ in tuple ¢
T, t*, v* any generalization of table T', tuple ¢, and value v
A T), A @), A(v)  generalizations of table T', tuple ¢ and value v with respect mapping
A(v) set of all possible generalizations of value v
A 1(v*) set of all atomic values that generalized value v* stands for
Pugs Puy Given a summary structure and private table T,
probability that A, (T') is k-anonymous (¢-diverse)
Eupr Eny Given a summary structure and private table T,

expected number of tuples violating k-anonymity (¢-diversity) in A, (T")

3. INSTANT ANONYMIZATION ALGORITHMS
3.1. u-Probability and u-Expectation

Given a summary function F on a table 7' and the size of T', our aim is to find a mapping
w that will likely make T k-anonymous or close to k-anonymous. Most anonymity
algorithms search a fixed space of generalization mappings and check for each mapping
to see if the anonymity constraints are satisfied. Thus, the following two definitions
play a crucial role in designing instant anonymization algorithms:

Definition 3.1 (up-Probability P,,). Given F on T, a mapping n and the size of T,
ux-probability is the probability that A,(T') is k-anonymous.

Definition 3.2 (up-Expectation £,,). We say outliers for an anonymization 7'* are
those tuples in T'* that violate k-anonymity. Given F on T, a mapping u and the size
of T', up-expectation is the expected number of outliers in A, (7).

Both definitions are useful for our purpose. u-Probability is our confidence to get a %-
anonymization when we apply the mapping, however this does not say anything about
the number of tuples violating the condition in the worst cases. There might just be only
one outlier in the dataset violating k-anonymity and yet uz-probability tells nothing
about it. Note that data releaser has the option to fully suppress an outlier to enforce
k-anonymity, so a mapping producing a small number of outliers is still an alternative
to the data releaser. uuz-Expectation on the other hand identifies the expected number
of outliers, however does not say anything about the distribution. A mapping with a
good expectation can very well result in a huge number of outliers with unacceptably
high probability. We evaluate the effectiveness of both notions in Section 7.

In an ¢-diversity framework, the notions of u-probability and p-expectation have
slightly different meanings. We redefine both notions for ¢-diversity:

Definition 3.3 (ue-Probability P,,). Given F on T, a mapping u and the size of T,
(e-probability is the probability that A, (T') is ¢-diverse.

Definition 3.4 (u.-Expectation &,,). We say diversity outliers for an anonymization
T* are those tuples in T* whose equality group violates ¢-diversity. Given F on T,
a mapping u and the size of T', u,-expectation is the expected number of diversity
outliers in A, (T).

The notation is summarized in Table III. We now prove that higher-level generaliza-
tions have higher uz-probabilities:

THEOREM 3.5. Given u' C p?, Py = Ppand £, < €.
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Proor. Let A, 7 be the event that A,(T') is k-anonymous. Thus, by Definition 3.1,
u-probability for u! is given by,

,PM% == P(A/LI,T | F)

= PAu.r | T=T,F)-P(T=T;|F)
T;

= ZP(AWT | T =T,)-P(T =T; | F)
T;

Since given a table T';, we can check for k-anonymity, by antimonotonicity, we have
P(Au 1, | Tj) = P(Ape 1, | T)). Thus;

Pu=> PAar|T=T) PT=T|F)
T;
Pup = P

m
O

We skip the proof for uz-expectation as it is similar. The theorem and the proof can
trivially again be extended for u,-probability and u,-expectation.

In Sections 4 and 5, we probabilistically analyze k-anonymity and ¢-diversity given a
generalization mapping © and show how to calculate p-probability and u-expectation
of achieving k-anonymity or ¢-diversity given the summary structure F' and w. But
first, we show how these two notions can be used to create an instant algorithm

3.2. Single-Dimensional Instant Anonymization Algorithm: S-INSTANT

In this section, we present a single-dimensional algorithm that traces the whole space
of single-dimensional mappings and returns a suitable mapping based on our previous
analysis. The algorithm has two phases:

(1) Without looking at the data, the algorithm takes the summary structure, the data
size, and an anonymity parameter as an input and returns an ordered set of candi-
date mappings based on either u-probability or u-expectation.

(2) The algorithm then applies the generalization mappings in the candidate set to the
dataset until it finds one mapping satisfying the anonymity constraints.

The first phase is an in-memory calculation and is faster than the second phase which
requires database access. The algorithm can be modified to return both k-anonymous
and ¢-diverse outputs To achieve k-anonymity or ¢-diversity, we use the calculations in
Section 4 or 5 respectively. Without loss of generality, in this section, we assume we
want to achieve ¢-diversity. We now give the details of the anonymization algorithm.

Algorithm S-INSTANT searches the whole domain of single dimensional mappings
in a top-down manner (see Definition 2.3 and Figure 4a) to find those mappings with a
u-probability (or u-expectation) bigger than a user threshold. Since the full domain of
such mappings is quite large, S-INSTANT makes use of the anti-monotonicity property
to prune the search space.

The skeleton of S-INSTANT is given in Algorithm 1:

First Phase. In this phase, we do not look at the data but just make use of the summary
structure available to us. In lines 1-11, we first construct a candidate set of mappings
such that each mapping u in the list has a u-probability P, higher than a given thresh-
old. To do that we need to traverse the whole space of single dimensional mappings and
calculate P, for each mapping. Fortunately, the possible single-dimensional mappings
over a table domain form a lattice on the C relation (see Figure 4a). In lines 3-10, we
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ALGORITHM 1: S-INSTANT

Require: a private table T from domain D, a summary structure F on T, privacy parameter
£, a utility cost metric C M, a user threshold th;
Ensure: return a minimum cost ¢-diverse full domain generalization of 7.
let the candidate mapping set C be initially empty.
create lattice lat for all possible generalization mappings for D. Let n be the maximum
level of mappings in lat.
for all level i from n to 0 do
for all mapping u of level i in lat do
calculate P, by using F
if P, < th then
delete node u and all children and grandchildren of x from lat.

else
: calculate C M that would result from applying w«.
10: C+=un
11: sort C in ascending order with respect to C M values.
12: for all u € C(starting from the first element) do
13:  create T* = A, (T).
14:  if T* is ¢-diverse then
15: return T*
16: return null

N

traverse the lattice in a top-down manner. In lines 6-7, we use the anti-monotonicity
property of £-diversity to prune the lattice, thus reduce the search space. In line 9-10,
we collect those mappings that are not pruned in the candidate set and in line 11,
we sort the mappings with respect to the utility metric. The LM cost metric is a good
candidate here mainly because we can calculate the LM cost of a mapping without
accessing data as long as we can get marginal distributions of attributes from the sum-
mary structure (this is the case for summary structures such as Bayesian networks
and histograms). But other cost metrics could also be used in the form of expected costs.

Second Phase. When we apply the mappings in the candidate set to the private
table, we do not necessarily get ¢-diverse anonymizations. Thus, in lines 12-15, we
test whether the resulting anonymizations satisfy ¢-diversity. We start testing the
lowest cost mappings and continue until we find an ¢-diverse anonymization. Note
that this phase of the algorithm requires data access. Also note that depending on
the user supplied threshold, the resulting anonymization is not necessarily optimal in
minimizing the utility cost metric.

The selection of the threshold value is crucial to the execution of the algorithm. A
too small threshold would cause the algorithm to prune too little thus the algorithm
would possibly require many data accesses in the second phase but most likely find
the optimal anonymization. A too big threshold would cause the algorithm to prune
too much; thus, the algorithm would return a high cost anonymization but would most
likely make only one data access. In Section 7, we show experimentally that this really
is not a problem in practice.

The effectiveness of the first phase depends on the accuracy of the summary struc-
ture. For Bayesian networks, the accuracy drops as the number of outliers in the dataset
increases. Fortunately, most real datasets inherit enough patterns for BNs to capture
the underlying distribution. Again fortunately, the first phase of S-INSTANT is not
too sensitive to outliers. An outlier in a more specific domain may not be an outlier
in a generalized domain (If we consider an outlier as a random point, it is likely that
some will follow the same distribution as the other non-outliers in the new generalized
domain.) In most cases, even a small amount of generalization can wipe out most of
the previously existing outliers. S-INSTANT becomes sensitive to outliers only when
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ALGORITHM 2: M-INSTANT

Require: a private table T' from domain D, a summary structure F on T, privacy parameter ¢,
a user threshold ¢h;

Ensure: return a multidimensional ¢-diverse generalization of T'.

1: let @ be an empty queue of partitions (subdomains).

2: let M be an empty stack of mappings.

3: push a mapping u respecting domain D into M.

4: enqueue D into Q.

5: while there exists at least one subdomain unmarked in @ do

6

7

8

9

dequeue subdomain D’ from Q.
if D' is marked then

continue.
for all attribute a do

10: partition D’ with respect to a into subdomains D; and Ds.
11: create mapping u respecting subdomains in {D;, Do} U Q.
12: calculate P, by using F'.
13: if P, > th then
14: enqueue Dy, D, into @; push u into M.
15: break.
16: if a is the last attribute then
17: mark IV, enqueue D'.

18: while M is not empty do

19:  pop u from M.

20: create T* = A, (T).

21:  if T* is ¢-diverse then

22: further partition big segments in 7* and return 7'*.
23: return null.

we go down on the generalization lattice to more specific domains, and this happens, if
happens at all, towards the end of its execution. Inaccuracy in prediction in specialized
domains is not as costly as that in generalized domain. As we shall see in Section 7,
even histograms are accurate enough for S-INSTANT to make an accurate prediction
at the end of the first phase.

Algorithm S-INSTANT can easily be modified to prune with respect to yu-expectation.
We change line 6 to check against £, > th. This is especially useful when we allow the
algorithm to suppress some portion of the tuples (specified by the user as the acceptable
suppression rate) to minimize the effect of outliers on utility [LeFevre et al. 2005]. In
such a case, acceptable suppression rate is a good candidate for a threshold value.

As we mentioned before, u-expectation is a better approach than u-probability for
algorithms with suppression tolerance. However, this does not mean we cannot use
u-probability for such algorithms. u-Probability would return lower probabilities than
the actual one, but this difference can be offset by decreasing the threshold value. Since
it is not easy to find such a suitable threshold analytically, we do not elaborate on this
issue.

3.3. Multidimensional Instant Anonymization Algorithm: M-INSTANT

In this section, we present a multidimensional instant algorithm by modifying the
Mondrian algorithm with median partitioning proposed by LeFevre et al. [2006]. The
structure of the algorithm is similar to the one given in LeFevre et al. [2008].
Without loss of generality, assume we want to create an ¢-diverse anonymization.
We present the pseudocode in Algorithm 2. As in Section 3.2, in the first phase
(lines 3—17), we create several partitions of the multidimensional domain and calculate
the probability of ¢-diversity given the partitions and the summary structure. The way
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we create partitions as follows: We first partition the whole domain into two segments
by splitting with respect to the first dimension. Then we continue partitioning each
segment by splitting with respect to the other dimensions. For each partitioning, we
create a generalization mapping respecting the subdomains (e.g., a mapping that maps
data values to subdomains). We continue splitting the segments recursively until the
probability of ¢-diversity (given the associated mapping) goes below a certain thresh-
old. We start the second phase with the final partitioning of the domain. Again note
that we do not look at the data at this phase.

In the second phase (lines 18—-22), we check whether applying the final partitioning to
the dataset produces an ¢-diverse anonymization. If not, we merge the segments that
violate ¢-diversity with their siblings until the final segments all satisfy ¢-diversity.
Furthermore, we try to partition the relatively big segments (if any exists) to create a
better utilized anonymization.

In Section 7, we experimentally evaluate M-INSTANT and show that the M-
INSTANT algorithm produces anonymizations in seconds or few minutes while the
database implementation of Mondrian takes around 30 minutes to output an anony-
mization of similar utility.

4. INSTANT K-ANONYMITY

In this section, we look at the instant £-anonymity problem. Without loss of generality,
we assume, for only this section, every table has only QI attributes (e.g., we ignore the
salary attribute in Table I).

4.1. Deriving u,~Probability

Calculating the u;-probability is a computationally costly operation. To overcome this
challenge, we make the following assumption in our probabilistic model:

Tuple Independence. When we compute uz-probability, we assume distinct tuples are
drawn from the same distribution (¥') but are independent from each other. Meaning
for any two tuples ¢, € T, P(tili] = v;) = P(tili] = vj | &li] = v) for all possible
i, vj, and vg. Such equality does not necessarily hold given F. But for large enough
data, independence is a reasonable assumption. To demonstrate this, consider that
we sample from a census dataset of size n in which we know (from the histograms or
bayesian network) exactly n- p of the members are female. If we know that a particular
individual #; is female, for p = 0.5 the probability that another individual £ being
also female is % By tuple independence, we approximate this probability as 0.5.
Note that as n goes to infinite, the difference between the two quantities becomes 0.
For n = 100 (which can be considered a small number compared to the average sizes
of current databases), the error is around 0.005. Lahiri et al. [2007] present a more
extensive analysis on the error showing that the approximation is accurate for large n
and for p not too close to 0 or 1.

Definition 4.1 (Bucket Set). A bucket set for a set of attributes C, and a mapping u,
is given by B = {tuple b | there exists at least one tuple ¢ from the domain of C such
that b = A, (@)}

Intable T of Table I, for the mapping[0,1,1], the bucket set is given by {<M, AM, *>, <M,
EU,*>, <F,AM,*> <F,EU,*>}. When we refer to this bucket set, we will index the
elements: {by, bg, b3, b4}. (For the multidimensional mapping used in T, the bucket
set would be {<M, *,Grad>, <F,*,Grad>, <M, *,Pdoc>, <F,*,Pdoc>, <*,AM,Prof>, <*,EU,

Prof>}).
Generalization of any table T with a fixed mapping x can only contain tuples drawn
from the associated bucket set B = {by, ..., b,}. Since we do not access T' at this time,
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the cardinality of the buckets acts as a random variable. However, we know the size of
T'. Letting X; be the random variable for the cardinality of ;, and assuming 7' has size
N, we have the constraint ) ; X; = N.

In Table I, N = |T'| = 8. So for the buckets {b1, bs, b3, bs}; we have X7 + Xo + X3+
X, =8.

A generalization T* satisfies k-anonymity if each bucket (generalized tuple) in T*
has cardinality of either 0 or at least k. Using the notation X >° & for (X > k) v (X = 0),
ur-probability takes the following form:

P =P<ﬂ)(i zok‘in =N,F)-

By definition, the summary function F' determines the probability that a random
tuple ¢t € T will be generalized to a bucket b;:

b = F(b), (D

which we all the likelihood of bucket b;.

From the BN structure in Table II, the likelihood of ;1 = F(<M,AM,*>) = 5.5 .1 =
0.25. Similarly ¢ = F(<M,EU,*>) = €3 = F(<F,AM,*>) = {4 = F(<F,EU,*>) = .25.

Without tuple independence assumption, each X; behaves like a hypergeometric?
random variable with parameters (N, N¢;, N). However, hypergeometrics are slow to
compute. With tuple independence, we can model X; as a binomial random variable*
B with parameters (IV, £). Such an assumption is reasonable for big N and moderate ¢
values [Lahiri et al. 2007]. So the u;-probability can be written as:

Pu=P(NX ="K T X =N.X ~ 5N.00), @

Equation (2) resembles a multinomial cumulative, except we constraint over the
condition >° rather than <. Nergiz et al. [2009b] show that the exact calculation of
Equation (2) is infeasible and propose an approximation which is based on the approx-
imation of multinomial cumulatives given in Levin [1981]. We use their approximation
to calculate P,,, and refer to the Appendix for the derivation of it:

Let Y; be a truncated binomial; Y; ~ (X;|X; >° k). Let (X;, Y;) is the mean and (o}%, o%_ )

is the variance of (X, Y;) respectively, and AN(m, 62) be the normal distribution with
mean m and variance o2, then

P~ P(Ny — N| <0.5)
= P(INx — N| <0.5)

where Nx ~ N(X.X;, Y o%) and Ny ~N(XY;, Y o3)

In Algorithm 3, we show the pseudocode for calculating the uz-probability. In lines
1-8, the algorithm processes each bucket b; and calculates the mean and the vari-
ance of the associated truncated variable. These statistics are derived from the first
and the second moments of the variable. Note that the density function for the trun-

cated variable P(X = a|X >° &) is given by 77;((;((:0‘2) for a > k. As there is no closed

form for the cumulative function of a binomial distribution, unfortunately there is no
closed form for the moments of the truncated binomial. Thus, algorithm in lines 3—6,

JIP& =0k,

3H(x;N,M,n):A sample of n balls is drawn from an urn containing M white and N — M black balls without
replacement. H gives the probability of selecting exactly x white balls.

4B(x;n,p):A sample of n balls is drawn from an urn of size N containing Np white and N(1 — p) black balls
with replacement. B gives the probability of selecting exactly x white balls.
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ALGORITHM 3: 1i;,-Probability

Require: Given a bucket set B= {54, ..., b,}, the associated likelihood set L = {¢4, ..., £,} and
the number of tuples N; return the p;-probability. Let X; ~ B(IV, ¢;)

1: for all b, € Bdo

2 ceml; =0,Ex; =0, Ex? =0
3 for all x >° £ do

4: cemli+ = P(X, = x)

5: Ex,+=x-P(X, =x)
6.
7
8

Ex’+ =x2. P(X; = x)
calculate the mean mu; and the variance O’i2 of the variable X;

calculate the mean mu? and the variance 02?) of the truncated variable X;|X; >° % from

cml, Ex, and Ex2. L
9: mu=) nmu,o?=)y o?
10: mu® = Y mil?, 02 = 3 02
11: numl = P(IN(mu, o2) — N| < 0.5)
12: num2 = [](eml;)
13: den = PN (mu®, 2”) — N| < 0.5)
14: numl - num2/den

calculates the density function one by one at each point satisfying the k-anonymity
constraint. The first and the second moments are extracted during the process. In
lines 9-10, the algorithm sums up the expectations and the variances of all the bi-
nomials and the truncated variables to get the statistics for the sum of the random
variables.

Lines 3-6 can be rewritten to iterate over the x values with 1 < x < k2 — 1. Thus, the
in memory time complexity of calculating u-probability is O(n - k). Note that the time
complexity does not depend on the data size but the generalized domain size.

4.2. Deriving p4~Expectation

ur-Expectation is an easier problem which can be solved without the tuple indepen-
dence assumption. Let random variable Z; be defined as;

7 [0 X0k
"7 | X;, otherwise.

In other words, Z; holds the number of outliers in bucket b;. Then the total number
of outliers is the sum of all Z;. £, takes the following form:

= E(Z Zi) =Y EZ),

where
k-1
E(Z)=Y_j-B(,N,t).
j=1
We show, in Algorithm 4, the pseudocode to calculate uu;-expectation. In lines 3-4, the
algorithm calculates the expected number of outliers in bucket b;. The expectations for

all buckets are summed up and returned as the uz-expectation. The time complexity
of Algorithm 4 is also O(n - k).
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ALGORITHM 4: j;,-Expectation

Require: Same as in Algorithm 3.
1: Ex=0.

2: for all b; € Bdo

3: forallx € [1,(k—1)] do
4: Ex+=x-P(X =x)
5: return Ex.

5. INSTANT ¢-DIVERSITY
5.1. Deriving u,-Probability

Definition 5.1 (Sensitivity Likelihood). Sensitivity likelihood £; for a sensitive value
s; and a bucket b with set of quasi identifier values g7, ..., q; is the probability that
a random tuple ¢ will have the sensitive value s; given that ¢ has quasi-identifiers
q5....q;. Given F, sensitivity likelihood ¢; for s; and b is calculated as;

v Flaqy,....q;.s)
! ZJF(«IT,JI;’S]”

There is one set of sensitivity likelihoods for each given bucket and they can be
constructed from the given summary function. For instance, given the BN structure in
Table II, Sex, Nation and Salary are independent thus sensitivity likelihood ¢’ for the
sensitive value H and tuple <M,US,Prof> is P(H|Prof) = 1. Similarly for tuple <M, AM, *>

and values; = H, ¢} = ?E:ﬁﬁﬂ:fi; = 0'3526525 = 0.625. Again for tuple <M, AM, x> and value
sy =L, £, = 0.375. Note that for all the buckets b1, bs, b3, b4, we have the same set of
sensitivity likelihoods: {¢], £5}.

To achieve ¢-diversity, we need to enforce constraints on the sensitive attribute of
each bucket. In order to do that, we introduce another indicator random variable I; for

bucket b; as follows;

I 1, b; satisfies diversity;
* 7] 0, otherwise.

Thus, given X; ~ B(N, ¢;), we are interested in the following probability:

(vl
_PLX=N| ﬂ‘“-P(ﬂL)

,Pllz

P, X =N)
_ PR =N) ,
= P X =N UP(L). 3)

As we did before, we approximate the first numerator and the denominator with
normal distribution. Calculation of the denominator is the same as before. For the first
numerator, we need to calculate the mean (and the variance) of X;|I; which is given by;

PUIX; = %) P(X; = x)
P

EX|L) = ) x

X
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Calculation of P(I;) is also required in Equation (3). By conditioning on the variable
X;, we calculate P(L;) as P(I;) = >, P(L;| X; = x). Thus,

P X; = x) - P(X; = x)

> PLIX =) PX; =x) (4)

EX|L) =) «-

All we need to show is how to calculate P(I;|X; = x). Informally, we are interested in
the probability that a bucket of size x will satisfy ¢-diversity given a set of sensitivity
likelihoods. From now on we name this probability as the conditional ¢-diversity proba-
bility. Note that we need to calculate the conditional ¢-diversity for all possible x values
and for each bucket. Following the example above, conditional ¢-diversity problem for
the bucket b; = <M, AM, x> can be restated as the following: Given {¢}, £,}, and |b1| = x,
what is the probability that b, satisfies ¢-diversity?

Let U; be the frequency of sensitive value s; in b;. By tuple independence, each U; ~
B(x, £".). By the definition of ¢-diversity, we are interested in the following probability;

P =0 =7 (U= 5)| T =x). )
J J

Interestingly, this is nearly the same problem as the k-anonymity problem we ad-
dressed in Section 4.1 (see the resemblance of Equation (2) and Equation (5)). The only
difference is the constraint on the random variable. We can use the same technique
which is based on the approximation of multinomial distribution to approximate the
probability:

Let V; be a truncated binomial; V; ~ (U;|U; < 7). Let (U}, V;) be the mean and
(ag.j, a‘z,j) is the variance of (U}, V;) respectively, then

/.
J

v NP(|Nv—N|§0.5) X
PULIXi = %) = 5o — S =05) -UP(U, < Z)’ (6)

where Ny ~ N(Q_Uj, Zalzjj) and Ny ~ N V;, Za‘z,j).

In Algorithm 5, we show the pseudocode for calculating the u,-probability of a given
bucket set. Note the similarity to Algorithm 3. The key difference is that in lines 3-7, we
calculate the moments of the conditional X;|I; (the size of the bucket given the bucket
is ¢-diverse) rather than X;|X; >° k. To this end, as also mentioned in Equation (4), the
algorithm, in line 4, calculates the conditional ¢-diversity probability P([;|X; = x) by
calling Algorithm 3 with a slight modification. Specifically, the input to Algorithm 3 is
now the associated sensitivity likelihood set and the condition in line 3 is changed in
order to calculate the moments of X;|X; < 7. Note that if we fix the bucket size as x, 7
is the maximum frequency that a sensitive value can appear in an ¢-diverse bucket.

Calculation of wu,-probability with Algorithm 5 requires two dimensional approx-
imation of multinomial cumulatives. Cumulatives regarding the distribution in the
sensitive attributes (see line 4) are faster to compute since the sizes of the buckets
and the domain of sensitive attributes tend to be smaller compared to the size of the
dataset and the domain of the QI attributes. For each bucket and for each x < N, we
call Algorithm 3 which has a complexity of o(m - 7) where m is the domain size of the
sensitive attribute. Thus, the algorithm has an in-memory complexity of O(n - m- NT).
When N is large, the calculation of u,-probability is costly. In Section 6, we present
several optimizations that speed up the algorithm significantly.
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ALGORITHM 5: 1,-Probability for ¢-Diversity

Require: Given a bucket set B= {b, ..., b,}, the associated likelihood set L = {¢4, ..., £,}, the
number of tuples N, and for each b; the associated sensitivity likelihood set
Lo =", ..., £/D}; return the p,-probability. Let I; be the event that &; satisfies
£- dlver51ty and X; be the random variable for the size of b; (X; ~ B(N, ¢;)).
1: for all b, € Bdo
2: cml; =0, Ex; =0, Ex? =0
3: for all x € [1, N] do _
4 calculate P(I;|X; = x) by calling Algorithm 3 with X; ~ Bl(x, Z/;‘)) and truncation
Xj|X; < ¢
5 emli+ =P X; =x)- P(X; =x)
6: Exi+=x -P| X, =x) - P(X; =x)
7: Ex?+=x2-PL|X; =x)- P(X; = x)
8
9

calculate the mean mu; and the variance cr of the variable X;

calculate the mean mu(t) and the variance o2 of the conditional variable X |I; from cml,
Ex, and Ex? by using Equatlon 4.

10: mu =Y nuy, 0% =Y o}

11: m(t) Zmu z(t) _ Zo_z(t)

12: numl = P(l/\/(rrm 02)—N| <0.5)

13: num2 = [(emi;)

14: den = PUN(mu®, 62”) — N| < 0.5)

15: return numl - num2/den

5.2. Deriving u.~-Expectation
Define random variable W; as follows;

W — 0, =1
'7 | X;, otherwise.

In other words, W; holds the number of diversity outliers in bucket b;. Then the total
number of outliers is the sum of all W;. £, takes the following form:

En, = E( > W,-) = > EW).
Again E(W;) can be calculated by conditioning on X;:
EW) =) x-PX =x;I; =0)

=Y - PX =2)- (1 - PLIX; = x)). (7)

The right-hand side of Equation (7) involves the conditional ¢-diversity probability
and can be calculated from Equation (6). Note that unlike 2-anonymity, u,-expectation
for ¢-diversity is an approximation. In Algorithm 6, we show the pseudocode for the
computation of u,-expectation. The algorithm makes a call to Algorithm 3 in each

iteration. The time complexity is also O(n - m - NTZ).

6. OPTIMIZATIONS

As mentioned before, calculating u,-probability and u,-expectation of ¢-diversity
through Algorithm 5 is quadratic in the size of the dataset. This may not be acceptable
for large datasets. In this section, we present several optimizations that have a huge
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ALGORITHM 6: 1,-Expectation for ¢-Diversity

Require: Same as in Algorithm 5.
1: forall b, € Bdo

2 Ex =0.
3 for all x € [1, N] do
4: use Algorithm 3 to calculate P(Z;|X; = x) as in line 4 of Algorithm 5.
5: Ex+=x-PX =x)-(1-P{|X; =x))
6: return Ex.
Z:: /—\ 02 L&
7N AN

Density
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mial

Fig. 2. Approximations to binomial.

effect on the execution time of Algorithm 5. Note that Algorithm 5 makes N - n calls to
Algorithm 3 which approximates u;-probability of k-anonymity. Some of the optimiza-
tions in this section are directed to Algorithm 3 thus are also applicable in k-anonymity
domain.

6.1. Approximating the Truncated Binomials

In Algorithm 3, the inner-most loop (lines 3—6) calculates the mean and the variance
of the truncated binomial X|X > k. We require such a loop because the moments of the
truncated binomial have no closed forms. Thus, we introduce an overhead of 2 binomial
computations each of which is not efficient to compute. Next two subsections cover how
we can avoid this overhead.

6.1.1. Normal Approximation to Binomial Distribution. Fortunately, when the binomial den-
sity function is not too skewed, B(IN, p) can successfully be approximated by the normal
distribution NV (mu, 02) where mu = N - p and 62 = N - p- (1 — p). Specifically, we can
almost safely use a normal approximation when (mu + 30) € [0, N]. The advantage
of using a normal approximation is two fold. First, calculating the normal cumulative
functions are faster than calculating binomials. And more importantly, moments of the
truncated normal distribution are very well tabulated, thus can be calculated without
iterating a loop [Barr and Sherrill 1999].

We show in Figure 2(a) the approximation of the binomial variable X ~ (1000, 0.25).
We experimentally show in Section 7 that the normal approximation is one of the major
factors in making the proposed techniques practical.

6.1.2. Exponential Approximation to the Truncated Binomial. When we have a skewed density

function, a normal approximation to a binomial does not guarantee accurate results.
For these cases, we observe the following for a random variable X ~ B(N, p):
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Forx >k > (N - p);
PX=x+1X>k) n—x p
PX=xX>k) x—-11-p
As we get far away from the mean, the density of the truncation diminishes with a
variable factor. This very much resembles an exponential distribution. The difference
is that for an exponential distribution, the diminishing factor is constant. Given that
Z is an exponential variable with parameter A, we have:

Pax+1l<Z<x+2) —eMxt2) 4 o=+

Px<Z<x+1) —e 2+l peix

To approximate X|X > k, we set e* = Z%’{ﬁ and solve for A which serves as the
parameter for an exponential approximation. Note that this approximation is accurate
for small x values (those x values for which the diminishing rate of the truncation is
not too small compared to that of the approximation). This is generally good enough
for an approximation. The reason is that the majority of the probability mass in a
truncated binomial (or an exponential variable) is concentrated over small x values.
Thus, deviation of the approximation from the truncation over big x values is not
significant. We show in Figure 2(b) the approximation of the truncated variable X| X >
(mu + 30) where X ~ B(1000, 0.25).

As in the previous section, the moments of exponential random variables have closed
forms and they are very efficient to compute without iterating over all possible x values.
We experimentally see in Section 7 that the exponential approximation introduces little
or no accuracy loss but provide a major speed-up.

6.2. Pruning the Long Tail of a Binomial

In lines 3-7 of Algorithm 5, we iterate over each value x € [1 — ], to update the
moments of the random variable X;|I; (see Section 5). However, each iteration makes a
call to Algorithm 3 which has a complexity of n- N/¢. We can avoid most of these costly
calls with the following observation.

Note that in lines 5, 6, and 7, the returned value from Algorithm 3 (P([;|X; = x)) is
multiplied by P(X; = x) where X; is a binomial. However, no matter what the value of
P X; = x) is, if P(X; = x) is too small, the current iteration will contribute little to
the moments. We can use the following inequalities to bound P(X; = x).

By Hoeffding’s inequality, for X ~ B(n, p) with u =n-p,02=n-p-(1 — p):

P(|X — mu| > ko) < e 2P1-PF

By the Chebyshev inequality,
1
P(X —mu| > ko) < w2

Plugging the numbers in Hoeffding’s, we see that a binomial X ~ B(N, 0.25) devi-
ates 40 away from the mean with less than probability 0.0045. And no matter what
parameters we use, by Chebyshev, this probability is no bigger than 0.0625.

So skipping those points that are, say, 40 away from the mean would have a negligible
effect on the computation of the moments. By doing so however, we would achieve a
major speed up. Instead of iterating the loop in lines 3-7 of Algorithm 5 N times, we
would just perform 8¢ = 8,/Np(1 — p) < 4+/N iterations. For example, in Figure 2(a)
where N = 1000, p = 0.25; we have 80 ~ 110. This optimization effectively reduces the
complexity of Algorithms 5 and 6 to O(N+/N). In Section 7, we experimentally show
that pruning the long tail of a binomial indeed provides a huge speed up without any
major effect.
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Fig. 3. Conditional ¢-diversity probabilities of four different sets of likelihoods with varying data size
N =10-5".

6.3. Limit of the Conditional ¢-Diversity Probability

In lines 3-7 of Algorithm 5, for each x value, we calculate P([;|X; = x); in words we
calculate the conditional ¢-diversity probability; the probability that a given equality
group (i.e. bucket) of size x respects ¢-diversity given a set of sensitivity likelihoods. As
also mentioned above this is done by calling Algorithm 3 and is not a cheap operation.
We now try to reduce the number of these calls by observing the limit of P([;|X; = x).

THEOREM 6.1. Let S’ = {s],...,s,} be the set of sensitive values and L' = {¢}, ..., (,}
be the associated sensitivity likelihood set with the highest sensitivity likelihood ¢,,,,,
As in Section 5.1, let X be the random variable for the total frequencies of sjs in a given
bucket (i.e., size of the bucket) and I be the event that bucket respects ¢-diversity. Then,
as x goes to infinity, the following holds:

—If e, < % then P(I|X = x) is monotonically increasing and P(I| X =x) — 1.
—Else P(I|X = x) is monotonically decreasing and P(I|X = x) — 0.

Proor. Let U; be the random variable for the frequency of sensitive value s;. Recall
that by Equation 5, PI|X = x) = P(ﬂi(% < %) [>; U; = x). As also mentioned in
Section 4.1, by the tuple independence assumption, each U; ~ B(x, £;) with mean x - £;

and variance x - £; - (1 — ¢;). Thus, =% Y has mean ¢; and variance M As x goes to
infinity, variance becomes zero and the mean remains unchanged. In other words; in
an infinitely large bucket, the rate of the frequency of each sensitive value s] over the
total size of the bucket is exactly ¢;. Thus, if ¢, < 1, the bucket is ¢-diverse With 100%
confidence. Otherwise, the bucket is most definitely not ¢-diverse. O

Theorem 6.1 basically states when we iterate over increasing x values, we can derive
the limit of the conditional ¢-diversity probability without calculating it. To do this, we
compare the maximum sensitivity likelihood with the ¢ parameter. In Figure 3, we set
¢ = 1.33 and show the conditional ¢-diversity probabilities of four sets of likelihoods
with increasing data size. We observe that even though the set of likelihoods (0.75,0.25)
barely satisfy ¢-diversity (i.e., 0.75 < 7133), the conditional probability converges to
one. Similarly, (0.76,0.24) barely violates ¢-diversity (i.e., 0.76 > ﬁ), the conditional
probability converges to zero. How fast the probabilities converge depends on how much
bigger the maximum sensitivity likelihood is than the other likelihoods.
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We can exploit such a limit and reduce the number of calls to Algorithm 4 with
the following approach. As we calculate the conditional ¢-diversity probability in each
iteration, if the probability ever becomes more than a threshold (i.e., 0.99) or less
than a threshold (i.e., 0.01), we can stop further calls to Algorithm 4 and assume the
threshold value as the conditional ¢-diversity probability in future iterations. Doing so
would introduce a bounded error (i.e., an error no more than 0.01 in this case) that can
be managed through the selection of the threshold. We show in Section 7 that limiting
the conditional probability has a considerable effect on the execution time.

6.4. Overwhelming Maximum Likelihood

Recall from Equation (5) that P(I|X = x) = P((),(U; < )| >_; U; = x). This probability
is not easy to calculate because we deal with many U; variables all of which are
dependent through the conditional part. As also mentioned in Section 5.1, if we were
to deal with only one variable, the conditional would reduce to a binomial cumulative
(PWU; 1Y, Ui =x) ~ Bx, £;)). The next theorems allow us to make such a reduction.

THEOREM 6.2. Let X, Y be two random variables with P(X <a) <e1and P(Y > a) <
g9 where a is a fixed number and 0 < ¢1,e9 < 1. Then P(Y > X) < &1 + &9.

Proor.

PY >X)<PX<aVvyY>a
=PX<a)+PY >a)—-PX<a ANY >a)
<PX<a)+PY >a)<e +s9.

O

Basically, if a binomial U; rarely goes below a threshold a and another binomial U
rarely goes above a, then P(U; > U;) should be big.

THEOREM 6.3. Let X, Yq,...,Y, be n+ 1 random variables with P(Y; > X) < ¢;. Then
PNX=Y)=>1-3;¢.

Proor.
P(Ne=v0)=1-7(Uw > »)

=1—<Z7>(Yi>X>—Z7>(Y,~ >XAY;>X)
i ij
+Y P> XAY; > XAYe>X)+--)
i.J.k

>1-)Y PY;i>X)>1-) g O

In words, if a random variable X is bigger than all random variables Y; (i € [1 —
n]) with overwhelming probability, then X is quite likely the maximum of the set
XY,....Y,

We benefit from these two theorems as follows. Among the set of random variables
SU = {Uax, U1, ..., U,} that describe the frequency of sensitive values, suppose U,
has the highest sensitivity likelihood. We first check for all i € [1—n] and some negligible
&1 and g, if there exists a number th such that P(U,,.. < th) < e1 and P(U; > th) < &s.
We can perform such a check by making use of the discussion in Section 6.2. (I.e., th
can be picked such that th = mu — 40 where mu and o are the expectation and standard

ACM Transactions on Database Systems, Vol. 36, No. 1, Article 2, Publication date: March 2011.



Instant Anonymization 2:23

deviation of U,,,, respectively.) If we can pass the check, by Theorem 6.2, we will have
proved P(U,ux < U;) < g for all i € [1 — n] and some negligible ¢;. Then by Theorem
6.3, Uy is most likely to be the maximum frequency in the set. Thus, we can check
the ¢-diversity condition only on Ujax: P(yesy(U < 1) 1Y pesy U = %) = P(Upax <
712 vesy U = x). Note that (Upux | ) yesy U = %) ~ Blx, ¢£,,,.) meaning we do not
need to call Algorithm 3 to calculate the conditional ¢-diversity problem.

As the conditional ¢-diversity problem is no different then the u;-probability problem,
the optimization given in this section can also be used to speed up the instant k-
anonymity algorithm as well.

7. EXPERIMENTS

This section presents the experimental evaluation of the algorithm S-INSTANT. Re-
call from Section 3 that the algorithm first selects a candidate list of generalization
mappings based on either u-probability or u-expectation. This phase is performed by
utilizing a summary structure and does not require data access. Then the algorithm
applies the mappings to the dataset one by one and validates if the privacy constraints
are satisfied. The performance of the algorithm depends on how many validation steps
need to be performed before a privacy preserving mapping is found. We also presented
several optimizations for S-INSTANT in Section 6. In this section, we respectively use
the names HYBRID, EXPO, SD_CUT, LIMIT, and MAX for the optimizations given
in Sections 6.1.1, 6.1.2, 6.2, 6.3, and 6.4. We also present a brief analysis of the M-
INSTANT algorithm.

During our experiments, we use the real datasets® that were extracted from CENSUS
data and previously used by [Xiao and Tao 2006a; Ghinita et al. 2007]. The set con-
sists of 5 similar datasets with varying cardinalities, same QI-attributes and the same
sensitive attribute. QI-attributes in the datasets are Age, Gender, Education, Marital
Status, Race, Work Class, Native Country and the sensitive attribute is Salary. We run
S-INSTANT with both histograms and BN structures. While histograms are generated
by the algorithm, we assume BN structures are available as a DBMS resource. Thus,
execution times include the construction costs for histograms but not for BN structures.
For each dataset, we create a BN structure by using the BANJO® tool and selecting
the simulated annealing-based method. Resulting BN structure of the dataset with
cardinality 100k can be seen in Figure 4(b). We conducted our tests on a Core2Duo
2.0GHz powered system with 2GB memory, running Linux and the algorithm is im-
plemented in Java. Table IV summarizes the parameters of our experiments and their
corresponding values.

We implemented two versions of S-INSTANT that searches the space of full do-
main generalizations (as in Incognito [LeFevre et al. 2005]) and single dimensional
algorithms (as in k-Optimize and ¢-Optimize [Bayardo and Agrawal 2005]). We com-
pare S-INSTANT with the optimal full domain k-anonymity (or ¢-diversity) algorithm,
Incognito and a DGH version of the optimal single dimensional algorithm %-Optimize
(or ¢-Optimize). We use in-memory implementations of Incognito, k2-Optimize and
S-INSTANT. Among this algorithms, the original Incognito uses bottom-up pruning
(checking starts at the bottom of the generalization lattice and upper nodes are pruned
whenever k-anonymity is satisfied for the current generalization mapping). In order
to optimize Incognito for an in-memory environment, we modify the algorithm so that
top-down pruning is performed (see Section 3.2). As noted in Fung et al. [2005] and
Nergiz et al. [2007], a top-down Incognito prunes much better than its bottom-up ver-
sion. (As an example for the dataset we used, a top-down Incognito prunes around

5Available at www.cse.cuhk.edu.hk/~taoyf/paper/vldb06.html
Shttp://www.cs.duke.edu/~amink/software/banjo/
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Fig. 4. (a) Generalization Lattice, (b) BN structure of the dataset with N = 100k.

Table IV. Parameters and Tested Values

Parameter Values

13 20, 40, 60, 80, 100

l 2,3,4,5,10

cardinality N 100k, 200k, 300k, 400k, 500k
number of QI-attributesd | 3,4,5,6,7

suppression rate SR 1%, 2%, 3%, 4%, 5%
optimization OPT MAX, LIMIT, EXPO
wu-Probability threshold ¢2 | 0.1,0.3,0.5,0.7,0.9

2000 of 2150 possible generalizations, while bottom-up version prunes only around
150.) The comparison is carried out in terms of both execution time and utility of the
anonymization. We use the LM cost metric [Ilyengar 2002] (see Section 2) to quantify
utility. Note that S-INSTANT can be run to adopt either p-probability or u-expectation
as the pruning criteria. In this section when we say u-probability or yu-expectation, we
refer to these two versions of S-INSTANT.

One important point to make is the following: As mentioned before, we use in-memory
implementations of Incognito, k-Optimize and S-INSTANT. This unfairly favors Incog-
nito and £-Optimize. As also reported in LeFevre et al. [2005], a database implementa-
tion of Incognito requires minutes/hours to execute as opposed to the seconds we report
in the figures’. The relative performance of S-INSTANT we present in this section is
certainly a lower bound on the actual performance we would see in a database imple-
mentation. Having said that, we also show the number of data scans required by both
algorithms inside the bars in the figures.

7.1. k-Anonymity Experiments

For pi-probability experiments, we use the optimization HYBRID. We select 0.8 as
the threshold value for S-INSTANT. Recall that S-INSTANT prunes any mapping in
the generalization lattice with u-probability (probability that mapping will produce a
k-anonymous generalization) less than the threshold.

"The execution times in the figures belong to an in-memory implementation. However, S-INSTANT requires
very few data scans in all experiments, therefore does not suffer much from additional IO costs. There is little
to no difference in speed between an in-memory implementation of S-INSTANT and its database version.
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Fig. 5. k-Anonymity experiments: Incognito vs u-Probability vs u-Expectation when & and N vary.
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Fig. 6. k-Anonymity experiments: k-Optimize vs u-Probability vs u-Expectation when & and N vary.

For uz-expectation, we use the only applicable optimization SD_CUT. We select 1
as the threshold value. That is, S-SINSTANT prunes any mapping with uz-expectation
(expected number of outliers violating k-anonymity) more than 1.

In Figures 5(a), 5(b), 6(a), and 6(b) we evaluate the effect of varying k. In terms
of speed, we see that both u;-probability and u;-expectation based S-INSTANT out-
perform Incognito and £-Optimize by a factor of at the least 100. As expected, if we
increase the value of &, Incognito and 2-Optimize run faster since less number of nodes
are being visited in the generalization lattice by the algorithm (search space of the
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Fig. 7. k-Anonymity experiments: Incognito vs u-Expectation when SR varies.

algorithm decreases). In Section 4.1, we showed that the execution time of -
probability and uz-expectation correlates with £ (O(n - k)). However, as k increases,
fewer calls to uz-probability and u;-expectation are made (more nodes are pruned) and
execution times appear to be independent of k. In terms of data scans, both Incog-
nito and £-Optimize check more than 100 mappings for k-anonymity, thus refer to
data more than 100 times. Nearly all versions of S-INSTANT find the k-anonymous
mapping in their first (or rarely third) trial. In terms of utility cost, uz-probability and
ur-expectation based S-INSTANT differ from Incognito and k-Optimize by a slight mar-
gin only when £ = 60 and k2 = 80. For other % values, all three algorithms perform the
same This means that in most cases, S-INSTANT finds the optimal mapping by making
only one scan of data. This surely is the best an anonymization algorithm can do.

In Figures 5(a), 5(d), 5(c), and 6(d) we perform a similar experiment and show the ef-
fect of varying dataset cardinality. In terms of speed, we observe that both u-probability
and p-expectation based S-INSTANT outperform Incognito, k-Optimize by a factor of
at the least 65. While all algorithms require more time as the cardinality increases,
S-INSTANT scales much better than Incognito and k-Optimize. Note again that S-
INSTANT finds the optimal mapping in most cases.

As mentioned in Nergiz and Clifton [2007], and LeFevre et al. [2005] and also in
Section 2, allowing single dimensional algorithms to suppress some of the tuples re-
duces the negative effect of outliers on the utility. We also run both algorithms such
that they tolerate a certain number of tuples to be fully suppressed. The effect of tuple
suppression to the execution time and the utility cost of the anonymization is shown
in Figures 7(a) and 7(b). Note that a u;-probability based S-INSTANT cannot capture
suppression tolerance but uz-expectation does. So we include only the u;-expectation
test results and set the threshold as the suppression tolerance rate. In terms of speed,
we see that uz-expectation based S-INSTANT outperforms Incognito by a factor of 15
at the least. In terms of utility, both algorithms perform similar, the largest LM differ-
ence is 0.06 which occurs when suppression rate is 5% and when we use histograms.
As was foreseen, both algorithms return more utilized (more specific) mappings. This
increases the number of data accesses Incognito needs to make to thousands. This
number remains to be one for S-INSTANT.

Even though we do not present the results, we also observed the effects of a varying
threshold value. Interestingly, the k-anonymity algorithm S-INSTANT is insensitive
to a wide range of changes in the threshold value. For example, we get the same utility
and execution time with the thresholds 0.1 or 0.9. (For all generalizations in the lattice,
we have either P,, < 0.1 or P, > 0.9) This implies that the selection of the threshold
value is not a real burden on the data anonymizer.?

8This may not be true for some datasets with large domains and with DGHs of large heights. In those cases,
the search space is bigger and it is more likely to find generalizations with border line u-probabilities.
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Fig. 8. ¢-Diversity experiments: Incognito vs u-Probability vs u-Expectation when ¢, N and d vary.

7.2. ¢-Diversity Experiments

We compare the ¢-diversity version of S-INSTANT with the optimal full domain and
single-dimensional ¢-diversity algorithms Incognito and ¢-Optimize. Except one exper-
iment where the effect of using different combinations of optimizations is observed, we
use all five optimizations in both u,-probability and u,-expectation based S-INSTANT
executions.

In Figures 8 and 9 we evaluate the effects of varying ¢, N and d. In terms of execution
time, we observe that S-INSTANT algorithms perform much better than Incognito and
£-Optimize algorithm in all three experiments (at times by a factor of 20). We see
that u,-probability based S-INSTANT is generally faster than u,-expectation version.
In terms of utility, u.-probability generally performs very similar to Incognito and
¢-Optimize whereas u.-expectation slightly performs worse than the other two. One
interesting observation is the following: Even though the complexity of u,-probability
and us-expectation depends on the data size, we see in Figure 8(c) that the execution
times of S-INSTANT algorithms do not seem to change with increasing data size. This
is the case even when the algorithm returns the same output. The reason for this is
that the optimizations being used hide the effect of data size to time complexity.

In Figures 10(a) and 10(b), we show how different combinations of optimizations
affect execution time and utility of the anonymization. Even though we do not present
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m ¢-Optimize m pe-Probability (BN) = pe-Expectation (BN) m ¢-Optimize m pe-Probability (BN) = pe-Expectation (BN)
He-Probability (Hist)  pe-Expectation (Hist) He-Probability (Hist)  pe-Expectation (Hist)
100000
10000
1000
100
10
1
€ e
(a) Execution Time vs £; N = 500k (b) Loss Metric vs £; N = 500k
me-Optimize = ue-Probability (BN) = pe-Expectation (BN) ' ¢-Optimize m pe-Probability (BN) = pe-Expectation (BN)
ue-Probability (Hist)  pe-Expectation (Hist) pe-Probability (Hist)  pe-Expectation (Hist)
10000 1
09
08
1000 1 07
& 0.6
100 05 -
g 0.4
© o2
0.1 -
1 o
100k 200k 300k 400k 500k
N N
(¢) Execution Time vs N; £ =5 (d) Loss Metric vs N; £ =15
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Fig. 10. ¢-Diversity experiments: pu-Probability vs u-Expectation when OPT varies.

results here, we observe that the optimizations HYBRID and SD_CUT have a huge
effect on the execution time. Without any of these optimizations, S-INSTANT does not
terminate in a reasonable time. So, we fix these optimizations, and try to evaluate the
effects of the others. We see that S-INSTANT runs fastest when all optimizations are in
place. When we remove any one of the optimizations, the execution time drops meaning
that each optimization is effective independent of the others. We also observe for p,-
probability and u,-expectation based S-INSTANT that using different combinations of
optimizations result in little or no difference in utility. We conclude that optimizations
greatly speed up the execution times at the cost of negligible utility loss.

In Figures 11(a) and 11(b), we evaluate the effects of varying threshold value th. As
noted before, a big th allows the algorithm to prune a lot but might cause the algorithm
to miss the optimal mapping while the algorithm with a smaller ¢4 is more likely to
find the optimal solution at the cost of higher execution times. While we see this effect
in our experiments, the deviations in execution time and utility are not significant. In
other words, the algorithm is not too sensitive to the selection of the threshold value.

Also note the number of data accesses required for the algorithms. Neither of the ver-
sions of S-INSTANT makes more than three data access with BN structures and more
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Fig. 11. ¢-Diversity experiments: u-Probability when threshold ¢4 varies.
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Fig. 12. k-Anonymity experiments: Mondrian vs p-Probability when % varies.

than 55 data accesses with histograms. The previously proposed ¢-diversity algorithm
can go as high as thousands.

Lastly, we want to compare the two versions of S-INSTANT that use BN structures
and histograms. Generally, BN structures are more accurate than histograms and as
can be seen from k-anonymity and ¢-diversity experiments, this slightly affects the
performance of the algorithm S-INSTANT. However, in most cases the extra utility
and efficiency we get by using BN structures are not very significant. Also note that
constructing BNs from scratch is a costly operation, thus the algorithm can benefit from
BN structures only if they are supplied by the DBMS. This makes the histogram version
of S-INSTANT an attractive option for an efficient single-dimensional algorithm.

7.3. Experiments on Multidimensional Instant Algorithm

In this subsection, we compare a database implementation of M-INSTANT algorithm
with a database implementation of the multidimensional Mondrian algorithm [LeFevre
et al. 2006] in terms of efficiency and utility. Note again that the first phase of M-
INSTANT algorithm does not access database. Mondrian algorithm and the second
phase of M-INSANT algorithm use count queries on partitions of database to check for
k-anonymity property. Using Oracle 10g as the DBMS, we perform the experiments on
the same dataset with a threshold 0.95 and run M- INSTANT with both histograms and
BN structures. We only use the version of M-INSTANT that is based on u;-probability.
We leave a more detailed analysis of the approach as a future work.

For all & values listed in this section, a database implementation of Mondrian takes
more than 30 minutes to execute.® As M-INSTANT runs much faster, in Figure 12(a),

9An in-memory implementation of Mondrian takes around 10-20 seconds to anonymize the same dataset.
Note that M-INSTANT does not need to be faster than an in-memory version as it does not require that data
fits in the memory.
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Table V. k-Anonymity Experiments: u-Probability when
Threshold ¢A Varies

th 0.1 0.3 0.5 0.7 0.9
LM Cost 0.084 0.084 0.084 0.084 0.084
Time (sec) 299 295 281 271 134

we include the execution times only for M-INSTANT. As can be seen from the figure,
M-INSTANT is at least 25 times faster than Mondrian.

In Figure 12(b), we compare the multidimensional algorithms with respect to the
utility of the anonymizations. While both M-INSTANT algorithms fail to find the same
generalization as the Mondrian does, the difference in costs of both anonymizations is
no bigger than 0.03. This implies that the multidimensional instant algorithms are rea-
sonably successful. We also observe almost the same performance for the two versions
of M-INSTANT algorithms that run with histograms and BN structures. Thus, even
a simple summary structure is enough for a successful analysis of multidimensional
k-anonymity. In Table V, we show the performance of M-INSTANT when threshold
th varies. While utility is not affected, execution time seems to be decreasing with
increasing threshold value. This is because a low threshold value results in smaller
partitions at the end of the first phase. These partitions violate k-anonymity with high
probability, triggering many merge operations in the second phase.

While considerably faster than the database implementation of Mondrian, the new
algorithm M-INSTANT is slower than S-INSTANT. The main reason is that with extra
flexibility, M-INSTANT generates generalizations with p-probabilities very close to the
threshold value. So it becomes more likely for the partitions in the final generalization
to violate the k-anonymity property. In this case, the algorithm needs to access data
more often in the second phase.

8. CONCLUSIONS AND FUTURE WORK

Many of the previous anonymization algorithms require a considerable number of data
accesses. In this article, we addressed this problem by presenting a new single dimen-
sional algorithm, S-INSTANT for both k-anonymity and ¢-diversity. S-INSTANT makes
use of the available DBMS resources to generate mappings with high u-probabilities;
probability that the mapping would produce a k-anonymous (or ¢-diverse) generaliza-
tion. We showed how to approximate such probabilities efficiently. We also presented
several optimizations to make the proposed technique practical.

We experimentally showed that S-INSTANT algorithm greatly outperforms the pre-
viously proposed single dimensional algorithms in execution time at the cost of little
or no utility loss. This is true for both k-anonymity and ¢-diversity. In most cases, S-
INSTANT requires only one scan of data, which is the best any algorithm can achieve.
While S-INSTANT requires a threshold parameter to be specified, practically the per-
formance of the algorithm is insensitive to the threshold.

An obvious future study would be to design instant algorithms for other database
and data mining applications. As mentioned before, there is strong motivation for de-
signing fast-response algorithms when we need to run them many times perhaps with
different parameters (e.g., visualization). A strong candidate for such an application
is perhaps clustering. Most often a good parameterization is required to get clusters
that are visually relevant. An instant clustering technique (that interacts with a sum-
mary model instead of a huge database) would most certainly speed up discovering
such parameters. Another future study is a comparative analysis of u-probability and
Bonferroni based predictions [LeFevre et al. 2008]. Bonferroni predictions can also be
made based on histograms (or other summary structures) without requiring sampling.
As mentioned before, the techniques given in this paper offer more accurate predictions
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while Bonferroni based predictions are often more efficient. One can also consider a
hybrid approach, in which we start with Bonferroni predictions for the mappings in
the upper nodes of the lattice and switch to approximations whenever prediction falls
under the threshold. Such an approach would likely benefit from the advantages of
both approaches.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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