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Patient-specific data from electronic medical records 

(EMRs) is increasingly shared in a de-identified form 

to support research. However, EMRs are susceptible to 

noise, error, and variation, which can limit their utility 

for reuse. One way to enhance the utility of EMRs is to 

record the number of times diagnosis codes are 

assigned to a patient when this data is shared. This is, 

however, challenging because releasing such data may 

be leveraged to compromise patients’ identity. In this 

paper, we present an approach that, to the best of our 

knowledge, is the first that can prevent re-identification 

through repeated diagnosis codes. Our method 

transforms records to preserve privacy while retaining 

much of their utility. Experiments conducted using 

2676 patients from the EMR system of the Vanderbilt 

University Medical Center verify that our method is 

able to retain an average of 95.4% of the diagnosis 

codes in a common data sharing scenario. 

 

INTRODUCTION 
The biomedical community is migrating toward the 

reuse of electronic medical records (EMRs) for large-

scale population research, such as genome wide 

association studies (GWAS).  Given the cost of such 

studies, the National Institutes of Health (NIH), among 

other organizations, have enacted policies that 

encourage researchers to share data.
1,2

  To facilitate this 

activity, various institutions have erected infrastructure 

to gather and disseminate records for reuse, such as the 

Database of Genotypes and Phenotypes (dbGaP).
3  

Data 

sharing must respect a patient’s right to privacy and, in 

support of this goal, many regulations require the data 

to be de-identified.  For instance, the NIH policies 

invoke a standard, akin to the HIPAA Privacy Rule, 

which removes 18 identifiers (e.g., names and dates).
4
 

Despite such measures, it has been demonstrated
5
 

that EMR-derived records can be re-identified to 

named individuals when they retain standardized 

billing codes (e.g., ICD-9) that also reside in identified 

resources, such as discharge databases. This is a 

concern because the accompanying genomic data is 

often managed outside of the EMR
6
, such that linkage 

leads to the revelation of previously unknown sensitive 

data.  Notably, computational methods have recently 

been designed to prevent this type of linkage attack in 

certain instances.
7
  However, these approaches assume 

a patient’s longitudinal record is summarized, such that 

it contains no more than one occurrence of a diagnosis.  

However, clinical informaticians have recognized that 

more detailed information is necessary, such that data 

from multiple visits
8
, with repeated codes, are utilized 

in EMR data mining activities.  This type of profile is 

not addressed by existing privacy protection methods. 

As an example of the problem studied in this work, 

consider the research dataset in the right of Figure 1. 

This was constructed by de-identifying a subset of the 

larger patient population’s clinical records, shown in 

the left of the figure, and assigning DNA data gathered 

in a research setting.  If a data recipient knows that 

Tom was affiliated with the combination of codes “272, 

272, 724”, they can associate Tom with his DNA 

sequence “AC…T”. This is because Tom’s record is the 

only one in the population with this code combination.  

 

Identified EMR Data (P)                     
i ID ICD-9 

1 Dan 250 

2 Bella 250,250,272 

3 John 250,250,272,272 

4 Ada 401,401,401,401 

5 Tom 272,272,724 

6 Alan 250 

7 Eric 272,724 

De-identified Research 

Data (S) 
j ICD-9 DNA 

1 250 CT…A 

2 272,272,724 AC…T 

3 250,250,272 GC…A 

  
 E 

Figure 1. left) Patient population dataset P and 

right) Research sample S. 

 

In this paper, we present the first privacy-

preserving approach to explicitly thwart this problem.  

We realize our approach in an automated algorithm, 

called Greedy Code Censoring (GCCens), which 

attempts to maximize the number of repeated codes 

that can be safely released without supporting linkage 

attacks.  We illustrate the effectiveness of GCCens in 

retaining repeated comorbidities in a patient cohort 

from the Vanderbilt University Medical Center.
9
  

 

BACKGROUND 

The Need for Detailed EMR Data 

EMR systems are not explicitly designed to support 

research and can accumulate misinformation that can 

limit reusability.
10

 One typical source of inaccuracies is 

administrative errors (e.g., when a patient is assigned 

ICD-9 code “250.00” for diabetes type I instead of 

“250.01” for diabetes type II).  Another source is noise 

that arises from the healthcare delivery process (e.g., a 

specialist refines a diagnosis over time). While 
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eliminating errors from EMR systems is challenging, 

researchers can still build accurate clinical models 

using EMR-driven data when this data contains 

repeated diagnosis codes (e.g., to identify phenotypes 

in the context of genetic association studies
8
). 

Typically, each time a patient is diagnosed with a 

condition or disease during a visit to the hospital, the 

patient’s record in the EMR system is updated by a 

clinician, which in turn, is transformed into an ICD-9 

code for billing purposes.  Hence, multiple visits to the 

hospital may result in the same ICD-9 code being 

replicated in a patient’s record, which can be applied to 

develop more accurate models of a patient’s status. 

 

Data Privacy 
An increasing number of investigations demonstrate 

that de-identified biomedical records
5,11-14

 are 

vulnerable to re-identification, often through publicly 

available resources. Several methods have been 

proposed to reduce re-identification risk by employing 

techniques that modify data prior to its release. 

Examples of such techniques are suppression, 

generalization, or randomization (see reference 15 for a 

survey).  Suppression removes certain values from 

records (or entire records), whereas generalization 

replaces specific values with more general, but 

semantically consistent values. Randomization 

methods, on the other hand, add noise to the values. 

In recent research
5
, it was shown

 
that naïve 

application of suppression and generalization are both 

inadequate to preserve the privacy of EMRs containing 

diagnosis codes while retaining their utility in practice, 

but proposed no method to achieve this goal. A method 

to prevent the aforementioned linkage attack was 

proposed in 7, but was designed for data that contains 

no repeated diagnosis codes. In this paper, we propose 

a method to deal with the latter, more general case. 

 

A Formal Model of the System 

Before proceeding, we formalize the privacy problem 

considered in this paper. Let U be the set of diagnosis 

codes (henceforth referred to as codes) stored in an 

EMR system. The dataset P = {p1, …, pn} represents 

the medical records of the patient population.  Each 

record pi is of the form 〈IDi, Di〉, where IDi is an 

identifier associated with a patient and Di = {d1, …, dk} 

is a set of codes for the patient (which are not 

necessarily distinct) derived from U.  The table on the 

left of Figure 1 depicts a population that is comprised 

of seven records. The fifth record in this table has ID5 

= Tom and D5 = {272, 272, 724}. 

 A second dataset S = {s1, …, sm} represents a 

sample of patient records to be shared.  Each record sj 

is of the form 〈Dj, DNAj〉 and corresponds to a patient 

whose record is in the population. Dj is a set of codes 

derived from U and DNAj represents genomic sequence 

data.  For instance, the record s1 in the table to the right 

of Figure 1 has D1 = {250}, DNA1 = {CT…A}, which 

was derived from record p6, that is Alan.  

 The linkage attack we consider assumes an attacker 

knows the identifying information and codes about a 

patient whose record is in the sample. This could occur 

through various routes. Consider, a data recipient may 

be an employee of the institution from which the data 

was derived, with access to the EMR system.  

Alternatively, the recipient may have knowledge about 

a neighbor or coworker.
16

 Or, in certain cases, a 

recipient may use public information; e.g., they may 

link de-identified hospital discharge summaries with 

identified resources, such as voter registration lists
11,13

.    

 

METHODS 

Materials 

For this study, we worked with the de-identified 

version of StarChart, the EMR system of the 

Vanderbilt University Medical Center.
6
 We constructed 

P by using a set of 301,423 patients’ records that 

contain at least one of the following codes: “250” 

(diabetes mellitus), “272” (disorders of lipoid 

metabolism), “401” (essential hypertension), and “724” 

(back pain). We selected these codes because they 

appear frequently in the EMR system and are critical in 

defining a wide range of clinical phenotypes. 

The research sample S contains 2676 patient 

records and was extracted for the purposes of a GWAS 

on native electrical conduction within the ventricles of 

the heart.  The sample represents a “heart healthy” 

group with no prior heart disease, no heart conduction 

abnormalities, no electrolyte abnormalities, and no use 

of medications that can interfere with conduction. 

A record in S, on average, consists of 3.5, 2.3, 4,4, 

and 2 repeats of the codes “250”, “272”, “401”, and 

“724”, respectively.  A record in P, on average, 

consists of 2.2, 1.3, 2.5, and 0.9 repeats of the same 

codes.  It was shown in previous research
5
 that this 

cohort is appropriate for studying privacy threats in 

samples derived from Vanderbilt’s EMR system.  

 

Risk Measure 
We measure the level of privacy protection afforded to 

the sample using the distinguishability measure.
5
  This 

measure is applied to determine how many records are 

susceptible to linkage based on shared diagnosis codes. 

Specifically, given a set of codes Dj in S, 

distinguishability (which we refer to as a function dis) 

is equal to the number of records in P that contain all 

the codes.  For example, in Figure 1, dis(272, 724) = 2 

because two records in P contain all of these codes 

(i.e., Tom and Eric). Distinguishability is the inverse of 

the probability of re-identifying a patient, such that we 

say a patient is uniquely distinguishable if his record 

has a distinguishability of 1. 
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Censoring Algorithm 

GCCens is designed to limit the number of repeated 

codes that are released in patient records in a greedy 

manner. Greedy heuristics are commonly employed to 

anonymize data due to their ability to retain both 

privacy and utility relatively well.
17

 A notable strength 

of GCCens is that it significantly enhances data utility 

by employing a formal privacy model called k-

map.
13,18,19

 This model states that each record in the 

sample can be associated with no less than k records in 

the population from which it was derived.  In our 

setting, S satisfies k-map when, for each Dj in S, dis(Dj) 

≥ k. This ensures that each record in S can be 

associated with no less than k records in P based on the 

released diagnosis codes, and implies that the 

probability of performing the linkage attack is no 

greater than 1/k. 

The k-map model tends to offer “high” data utility, 

but assumes no knowledge of whether an individual’s 

record is contained in the released sample S.
19

 

However, such knowledge is difficult (if not 

impossible) to be acquired by an attacker in the context 

of the data sharing we consider. This is because, 

typically, a random fraction of EMRs with identical 

codes are associated with DNA information and 

released. 

More specifically, the GCCens algorithm accepts 

the following inputs: a sample S, a population P, a 

privacy parameter k and a set of censoring thresholds 

C.  The algorithm outputs T, a version of S that is k-

mapped to P. The parameter k expresses the minimum 

allowable number of records in P that can be mapped 

to a record of T based on diagnosis codes, while C is a 

set of thresholds (called caps), each of which 

corresponds to a distinct code in S and expresses the 

maximum allowable number of times a code can 

appear in a record of T.  In effect, the caps act as an 

initial acceptable censor for the distribution of repeat 

counts. In this work, we follow standard 

assumptions
13,20

 in that we assume k and C are 

specified by data owners according to their 

expectations about an attacker’s knowledge. We also 

note that it is possible to specify C automatically by 

scanning S and recording the maximum number of 

occurrences of each code in all records.  

  The pseudocode of GCCens is illustrated in Figure 

2. In step 1, the algorithm invokes a helper function 

preprocess(), which iteratively censors diagnosis codes 

(i.e., removes one of their instances) from the dataset S  

until there is no code that appears more than its 

associated cap in S. The result of preprocess() is 

assigned to a dataset T. Then, in steps 2-10, GCCens 

iterates over the dataset T for as long as k-map is not 

satisfied. More specifically, in steps 3-7, the algorithm 

computes the number of code instances that need to be 

censored for each distinct code dj in U. This is achieved 

by iterating over all records in T (step 3), counting the 

number of records that harbor a diagnosis code dj that 

appears cj times in T and assigning these records to a 

set Rj (steps 5-7). Then, in steps 8-9, the algorithm 

determines the code dj that requires the least amount of 

censoring and removes it from all the records in Rj.  To 

minimize the number of codes that need to be 

modified, we remove one instance of dj per iteration. 

Subsequently, the cap cj for the censored code is 

decremented by 1 (step 10). Finally, GCCens releases a 

sample that satisfies k-map in step 11. 

Figure 2. Pseudocode for the GCCens algorithm. 
 

 As an example, let’s walk through the application 

of GCCens to the records in Figure 1. We assume k = 2 

and the censoring caps for the codes {250, 272, 401, 

724} are C = {2, 2, 0, 1}. First, T is set equivalent to S 

because no code appears more than its cap.  Next, 

GCCens finds that 2-map is not satisfied because 

dis(D3 = {250, 250, 272}) = 1.  So, GCCens censors 

one occurrence of “250” from the third record of T 

(i.e., this code was selected because the cap value is 2 

and only one record in T has 2 instances of the code).  

After censoring, the cap value for “250” is 

decremented by 1, so C = {1, 2, 0, 1}. At this point, 

GCCens finds k-map is still not satisfied because 

dis(D2 = {272, 272, 724}) = 1. Thus, one occurrence of 

“272” is censored from the second record of T.  

Finally, T satisfies 2-map and the algorithm terminates. 

The resulting solution is depicted in Figure 3. 
 

Anonymized  Research Data (T)   
j ICD-9 DNA  CUL 

1 250 CT…A  0 

2 272 ,724 AC…T  0.33 

3 250, 272 GC…A  0.33 

Figure 3. The resulting research sample from 

output by GCCens. 

 

Data Utility Measure 

When diagnosis code repeats are censored, there is a 

decrease in the utility of the dataset. To measure the 

utility loss, we introduce a measure called Censoring 

GCCens(P, S, k, C) 
Input: Sample S, population P, set C, parameter k  
Output: T, k-mapped version of S.  
Steps: 

 1.   T ← preprocess(S) such that no code appears more than 
its cap  
 2.    while there exists Dj ∈ T such that dis(Dj) < k 

 3.         for each distinct code dj ∈ U 

 4.              Rj ← ∅ 
 5.              for each record ti ∈ T   
 6.                  if dj appears cj  times in ti 

 7.                    Rj ← ti 

 8.         dj ← code with least number of records in Rj 

 9.         for each record ti ∈ Rj   
                   remove dj from T  

10.        cj  ← cj - 1  
11.    return T 
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Utility Loss (CUL).  This is defined as the number of 

censored codes in a record s divided by the total 

number of codes in s. As an example, assume that we 

remove one instance of “272” from the second record 

in S shown on the right table of Figure 1. In this case, 

CUL equals 1/3 because there were three codes in this 

record, one of which is censored.  We note that the 

greedy heuristic in GCCens is designed to minimize 

the sum of CUL values in each iteration by choosing to 

censor the code that incurs the minimum utility loss 

(see step 8 in Figure 2). 

 

RESULTS 

First, Figure 4 summarizes the risk of associating a 

patient’s record from the de-identified sample to their 

corresponding record in the patient population. This 

figure is a cumulative distribution and depicts the 

percent of patients in the sample (y-axis) that have a 

distinguishability score of a particular value or less (x-

axis) with respect to the population from which they 

were derived. As can be seen, more than 9% of the 

patients contained in the sample would be uniquely 

identifiable if the original data were disclosed. This 

confirms that a linkage attack is feasible in practice and 

the need for developing a formal protection method.   
 

 

Figure 4. Distinguishability of the original patient 

records in the sample. A distinguishability of 1 

means that a patient is uniquely identifiable.  

 

Next, to evaluate the effectiveness of GCCens in 

preserving utility, we report CUL scores when it is 

applied with all caps set to 3 (i.e., C = {3,3,3,3}) and 

various k values between 2 and 25. Table 1 reports the 

mean, standard deviation, median, and skewness (this 

is a standard measure of the asymmetry of the 

distribution
21

) of the distribution of CUL values for all 

records in the sample dataset. As expected, as we 

increase k we find an increase in the mean of the 

distribution of CUL.  This is because GCCens needs to 

censor a larger number of codes to meet a stricter 

privacy requirement. However, it is notable that 

GCCens retained 95.4% of the codes on average when 

k = 5 as is often applied in practice (i.e., the mean of 

the distribution of CUL was 0.046).
7
 We note that 

while 4.6% of the codes in a record were censored on 

average, GCCens modified 16% of the records in S. 

We also observed a positive skew in the distribution of 

CUL for all tested values of k, which implies that the 

number of censored codes is closer to 0 for most 

patient records. 

 

Table 1. Statistics on the distribution of CUL when 

GCCens was applied with all caps set to 3. 

k Mean Std. Dev. Median Skewness 

5 0.046 0.123 0 3.016 

10 0.046 0.123 0 3.016 

25 0.091 0.156 0 1.501 

 

Finally, we recognize that not all data recipients 

will feel comfortable working with EMR data this 

capped to varying degrees.  Thus, we evaluated the 

impact of forcing all values in C to be equivalent. For 

this set of experiments, we fixed k to 5 and varied the 

cap between 3 and 10. The results are summarized in 

Table 2. Notice that GCCens performed a greater 

amount of censoring when larger cap values are 

supplied. This is expected because large cap values 

permit more information to be released, which makes it 

more difficult to generate a sufficient privacy 

solution.
5,15,20

  However, GCCens managed to retain a 

reasonably large percentage of codes in all tested cases. 

In particular, 92% of codes were retained when the 

universal cap was set to 4 (i.e., the mean of the CUL 

distribution was 0.08). We believe this result is 

promising because the dataset derived by GCCens in 

this experiment was deemed to be useful for 

comorbidity analysis. Moreover, when releasing 5 

diagnosis codes GCCens retained on average 88.1% of 

the codes. 

 

Table 2. Distribution statistics of CUL when 

GCCens was applied with k = 5 and a universal cap. 

Cap Mean Std. Dev. Median Skewness 

3 0.046 0.123 0 3.016 

4 0.080 0.152 0 2.042 

5 0.119 0.183 0 1.383 

6 0.141 0.209 0 1.131 

7 0.156 0.229 0 1.050 

8 0.191 0.270 0 0.952 

9 0.197 0.279 0 0.939 

10 0.213 0.282 0 0.898 

 

DISCUSSION  

In this paper, we demonstrated the feasibility of a 

linkage attack based on repeated diagnoses derived 

from real patient-specific clinical data and developed 

an algorithm to provide formal computational 

guarantees against this attack. Our experiments verify 
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that the proposed approach permits privacy-preserving 

patient record dissemination while retaining much of 

the information of the original records. 

We believe this work is an important step towards 

increasing the type of information that can be made 

available to researchers without compromising 

patients’ privacy rights. This is partly because the 

approach we propose can be directly utilized by 

researchers when depositing data with diagnosis codes 

to repositories. However, our approach is limited in 

certain aspects that we wish to highlight to initiate 

further studies.  

First, as is true for all privacy-preserving 

approaches, our approach makes certain assumptions 

about the maximum amount of knowledge an attacker 

may possess and the semantics of published data. As 

such, it does not offer privacy protection guarantees 

against attackers who are able to exploit additional 

information (e.g., the time between a patient’s hospital 

visits) that may be published together with the type of 

data we studied in this paper. Information such as the 

relative time between diagnoses may be beneficial to 

assess chronicity, disease evolution, and downstream 

comorbidities.  For example, patients with rheumatoid 

arthritis may later need joint replacements, and have an 

increased incidence of cardiovascular disease.  We are 

currently working towards extending our approach to 

allow this type of information to be released in a 

privacy-preserving way.  

 Second, our approach suppresses diagnosis codes 

from the released dataset, which may incur more 

information loss compared to alternative data 

modification strategies
 

that have been successfully 

applied on biomedical data, such as generalization.
7
 As 

part of our future work, we intend to examine whether 

these strategies can be used alone or in combination 

with our approach to further enhance data utility. 
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